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ABSTRACT

This paper describes a cutpoint method for sampling from an

n-point discrete distribution that preserves the monotone rela-

tionship between a uniform deviate and the random variate it gen-

erates. This property is useful when developing a sampling plan

to reduce variance in a Monte Carlo or simulation study. The

alias sampling method generally lacks this property and requires

2n storage locations while the proposed cutpoint sampling method

requires m+n storage locations, where m denotes the number of

cutpoints. The expected number of comparisons with this method

is derived and shown to be bounded above by (m + n - 1)/n. The J

paper describes an algorithm to implement the proposed method as

well as two modifications for cases in which n is large and pos-

sibly infinite.

ACO*sasiof For

NTIS G".&
VUCl% T" 0

Ave j i .tty CodeS
Aor c \

..... - ,(.c,-enj/oDT C D ist .: . a k
.COP

MUM 11



' 7 -- - - --- ..: .2

I. INTRODUCTION

Let X be a discrete random variable on the integers I,...,n

with probability mass function (pi; il,...nI and distribution

function (d.f.)

qi qi-I + pi il',...,n. (1.1)

One straightforward way to sample from fqi; i ~l,...nI is to sam-

pie U from the uniform distribution on [0,1) and then determine X

from

X - mit Ii: qi > U). (1.2)

If the d.f. of X is stored in a table beforehand, this procedure,

known as the inverse transform method, requires n storage spaces

and EX comparisons on average, which may prove costly when n is

moderate or large.

At present, the most efficient way to sample repeatedly from

the d.f. of X is the alias method of Walker (1974a, 1974b, 1977).

See also Kroumal and Peterson (1979). This method requires stor-

age for'two arrays, the aliases Al,..*,An and alias probabili-

ties (ri - pr(X-iLi); iwl,...,nI where for il,...,n

.............
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pr(L-i) - 1/n

pr(XhilLi) + pr(X-AiIL-i) 1 (1.3)

and

p1 
= pr(Xmi) = I pr(XuiLj).

j=1

Prior to beginning the sampling experiment one chooses these ar-

rays to satisfy (1.3). After sampling U one computes L - InUj + 1

and selects X - L if rL t U(mod I/n) or otherwise selects X - AL.

Here JO1 denotes the largest integer less than or equal to 0. Note

that only one comparison is required to generate each X. The

arrays determined by (1.3) require 2n storage locations and are

not unique. If one wishes to retain the tabled values of (q), an

additional n storage locations are required.

Although the time independent nature of the alias method has

clear appeal, the method has two limitations that deserve

attention:

a. In general, the alias method does not preserve a monotone

relationship between U and X as does the inverse transform method

(1.2).

b. The allocation of 2n storage spaces my be infeasible

either due to the magnitude of n or the requiremnts of other

steps in the program in which the alias method is imbedded.

Furthermore, if one wishes to maintain the table of (qi), 3n

storage locations are required.
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While the issue of storage requirements is self explanatory,

the significance of the monotone property needs clarification.

Let Y and Y2 be random variables with d.fs. F1 and F2 and inverse

d.fs. GI(u) - min(yt F1(y) > u) and G2(u) = min(y: F2(Y) > u)

respectively. Then the minimal correlation between Y and Y2 occurs

for Y = G I(U) and Y2 G2 (1-U). The result is due to Hoeffding

(1940). See also Whitt (1976). In Monte Carlo sampling and dis-

crete event simulation one often wants to make use of the minimal

correlation property to induce a variance reduction for a given

sampling cost. More generally, one often can achieve a variance

reduction by appropriate use of the sequence U - U + (k-l)/r (mod 1)k

for k1l,...,r with a sampling technique that preserves monotoni-

city. See Hammersley and Handscoub (1964) and Fishman and Huang

(1980). The alias method may prevent one from effecting this

reduction in variance.

2. THE CUTPOINT METHOD

We now describe the cutpoint method for sampling from the

d.f. of X. The procedure preserves monotonicity, maintains the

table of Jqi| and allows the user to adjust space and time re-

quirements to accommodate the global needs of the problem setting.

The protedure again uses the inverse transform approach but with

more information computed beforehand, as in the alias method.

The proposed method is not new having been described in Chen and

Asau (1974). However, the present paper is the first to study

the tradeoff between computation time and space analytically.
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For a given positive integer m, define the cutpoints

min i: qi > (L-1)/m) D-1,...,, (2.1)

ml n.

Let L - fmU1 so that

pr(IL<X 'L 1 )i = l (2.2)

where X is as defined in (1.2) and 181 denotes the smallest in-

teger greater than or equal to 0. The maximal number of coa-

parisons needed to determine X exactly is LL - L + 1 and the

expected maximal number of comparisons is

Cmn . + ,)/. (2.3)

The storage requirements are mun locations with the tabled d.f.

of X comprising n of them.

Note that C is less than 2. implying that the cutpoint

method requires less than one additional comparison on average to

preserve monotonicity when compared to the alias method with the

same allocation of storage. If the d.f. table of X also is to be

maintained in the alias method, then for equal storage for the

cutpoint method. C2n , is less than 1.5 so that at most 1/2 of an

additional comparison is needed on average.

A more revealing evaluation arises if the d.f. of X is

directly taken into account. Let J denote the number of cow-

parisons on a trial. Then Ja equals X - L + 1, where X is

determined as in (1.2). and has expectation
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EJ -I + EX - EILm (2.4)

1 1 + EX - I/m

Table 1 illustrates the proposed method using the eight-point

distribution in Fishman (1978, p. 459).

Insert Table I about here

If space is not an issue then the alias method is the procedure of

choice. One then may view EJm - I as the cost of maintaining the

monotone property.

3. THE CASE OF LARGE n

If {qiI has infinite support (n- -) then neither the alias

method nor our cutpoint method alone suffices to perform sampling.

This insufficiency also may occur if n is merely large relative

to space availability. Here Kronmal and Peterson (1979) suggest

using the alias method "for a finite (but large) range of the de-

sired discrete distribution and a special tail-generating method

for the tail beyond". Ahrens and Dieter (1973) discuss the tail-

generating methods for several common parametric families of

distributions. More recently Ahrens and Kohrt (1981) described a

cutpoint method with a more dense frequency of cutpoints in the

tails.

Our own proposals for this situation take two forms. Mote

that in principle (2.4) suggests that 3I may be determined for

infinite n if EX is finite. Consider n* < n such that a pro-

cedure is available for computing (qi; i > n1. The cutpoint
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method then applies directly with tables used for {q.; i < n*j

and the available procedure for i > n*. The mean number of com-

parisons remains the same while the mean cost in time is propor-

tional to

1j w EJm + cI E(Jm IX > n*)pr(X > n*) (3.1)

where cI is the (computer dependent) increase in time required to

evaluate q, for i > n* relative to the time required for a table

lookup of qi when i < n*.

As an alternative, suppose that in addition to tabling

{IL; Lrl,...,mI we elect to table {qI ,$ q12,...,q i | instead of

{qlv q2' "qnj . To sample X, one proceeds, as before,

to select IL but now calculates q IL+, q IL+2... as needed.

Such calculations may be faster and more accurate due to the

nearby starting value q L. The mean cost in time is propor-

tional to

2 = 0 + m - c2 (3.2)

where c2 is the (computer dependent) relative increase in time

required to evaluate qi for i L IL as compared to the time re-

quired for a table lookup of q,

Clearly v 2 "l if and only if

c2 E(Jm - 1) - c, E(JMIX > n*) pr(X > n*) < 0 (3.3)

In addition, the second procedure requires 2m storage locations

while the first requires m+n*. For most applications cI > c2 > 0

and as n* increases the left hand side of expression (3.3) mso-

notonically increases from a negative value of (c - c )EJ = 2,

2 1J

-I [ . ..- -. .... . .. . . ... .
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when n* 0, to a positive limit of c2 EJ - c2, if EX <.

Again, the user is faced with a tradeoff between time and space

requirements.

These remarks are intended to be suggestive rather than de-

finitive. Individual decisions should be guided by the require-

ments and resources of the application intended. Although the

dominance of any of the methods described here with respect to

time and storage remains a questions one should keep in mind that

all the cutpoint methods described preserve the monotone property.

4. ALGORITHMS

In this section we present algorithms for implementing the

cutpoint method when sampling from the d.f. of the random

variable X. It is assumed throughout that Q is the name of an

array or function such that Q(i) - qi" In addition x denotes

the smallest integer greater than or equal to x.

Given the positive integer M-m, the algorithm CMSET in Figure 1

returns the array 11() - IL; L=l,...,M), as described in Sec-

tion 2. If desired, the array {QI(L) - q; L=,...,I suitable

for use as described in Section 3 is also returned; otherwise, one

deletes statement 8 of QUIET. Note that if the d.f. of X is

tabled,.the array Q is not destroyed by CQSIT.

Figure 1 About Here

Algorithm CH in Figure 2 enables one to sample for X, once

the setup in algorithm CQRT has been effected. An algorithm for

sampling from the uniform distribution on [0,1) is used in the

iii
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first step of CM. The random variable X need not have finite

support in order for CM to function cor-ectly. The value of X

upon return from CM is the variate desired.

Figure 2 About Here

Algorithms for the setup and use of the alias method are

given in Kronmal and Peterson (1979) and Ahrens and Kohrt

(1981). Care must be taken with these algorithms to preserve

{qi | and avoid the use of large arrays during initialization.

S
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TABLE 1. EXAMPLE OF CUTPOINT METHOD

i Pi qi m m+n C ,n EJm

1 .01 .01 1 9 8.00 5.31

2 .04 .05 2 10 4.50 3.31

3 .07 .12 3 11 3.33 2.31

4 .15 .27 4 12 2.75 2.06

5 .28 .55 5 13 2.40 1.71

6 .19 .74 6 14 2.17 1.64

7 .21 .95 7 15 2.00 1.45

8 .05 1.00 8 10 1.88 1.44

16 24 1.44 1.19

tl i , . . . . . , h , . . . . . . . . . . . .,
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FIGURE 1. ALGORITHM CMSET

1. L 0.

2. J0.

3. J J+l.

4. QJ * M*Q(J).

5. IF QJ < L THEN GO TO 3.

6. L * L+.

7. I(L) *J.

8. QI(L) " QJ/M.

9. IF L<M THEN GO TO 5.

10. RETURN.

FIGURE 2. ALGORITHM CM

1. SAMPLE U FROM UNIFORM [0,i).

2. X . I(rK*U).

3. IF U < Q(X) THEN RETURN.

4. X X+l.

5. GOTO 3.
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